概述如果能夠通過使led正向電流相等而確保白光發(fā)射的均勻性,則可以并聯(lián)驅(qū)動(dòng)白光led。為驅(qū)動(dòng)LED,應(yīng)該選擇可控的電流源或者帶有電流控制的步進(jìn)轉(zhuǎn)換器。采用電荷泵或者開關(guān)升壓轉(zhuǎn)換器可以實(shí)現(xiàn)這樣的與幾個(gè)標(biāo)準(zhǔn)產(chǎn)品的結(jié)合。 
    很多年來,發(fā)光二極管(LED)廣泛的應(yīng)用于狀態(tài)顯示與點(diǎn)陣顯示板。現(xiàn)在,不僅可以選擇近期剛剛研發(fā)出來的藍(lán)光和白光產(chǎn)品(普遍用于便攜設(shè)備),而且也能在已有的綠光、紅光和黃光產(chǎn)品中選擇。例如,白光LED被認(rèn)為是彩色顯示器的理想背光源。但是,必須注意這些新型LED產(chǎn)品的固有特性,需要為其設(shè)計(jì)適當(dāng)?shù)墓╇婋娫?。本文描述了新、舊類型LED的特性,以及對(duì)驅(qū)動(dòng)電源的性能要求。
標(biāo)準(zhǔn)紅光、綠光和黃光LED
使LED工作的最簡單的方式是,用一個(gè)電壓源通過串接一個(gè)電阻與LED相連。只要工作電壓(VB)保持恒定,LED就可以發(fā)出恒定強(qiáng)度的光(盡管隨著環(huán)境溫度的升高光強(qiáng)會(huì)減小)。通過改變串聯(lián)電阻的阻值能夠?qū)⒐鈴?qiáng)調(diào)節(jié)至所需要的強(qiáng)度。
對(duì)于5mm直徑的標(biāo)準(zhǔn)LED,圖1給出了其正向?qū)妷?VF)與正向電流(IF)的函數(shù)曲線。[1] 注意LED的正向壓降隨著正向電流的增大而增加。假定工作于10mA正向電流的綠光LED應(yīng)該有5V的恒定工作電壓,那么串接電阻RV 等于(5V -VF,10mA)/10mA = 300。如數(shù)據(jù)表中所給出的典型工作條件下的曲線圖(圖2)所示,其正向?qū)妷簽?V。
圖1. 標(biāo)準(zhǔn)紅光、綠光和黃光LED具有1.4V至2.6V的正向?qū)妷悍秶.?dāng)正向電流低于10mA時(shí),正向?qū)妷簝H僅改變幾百毫伏。
    圖2. 串聯(lián)電阻和穩(wěn)壓源提供了簡單的led驅(qū)動(dòng)方式。 
    這類商用二極管采用GaAsP (磷砷化鎵)制成。易于控制,并且被絕大多數(shù)工程師所熟知,它們具有如下優(yōu)點(diǎn): 
所產(chǎn)生的色彩(發(fā)射波長)在正向電流、工作電壓以及環(huán)境溫度變化時(shí)保持相當(dāng)?shù)姆€(wěn)定性。標(biāo)準(zhǔn)綠光LED發(fā)射大約565nm的波長,容差僅有25nm。由于色彩差異非常小,在同時(shí)并聯(lián)驅(qū)動(dòng)幾個(gè)這樣的LED時(shí)不會(huì)出現(xiàn)問題(如圖3所示)。正向?qū)妷旱恼W兓瘯?huì)使光強(qiáng)產(chǎn)生微弱的差異,但這是次要的。通??梢院雎酝粡S商、同一批次的LED之間的差異。 
正向電流高至大約10mA時(shí),正向電壓變化很小。紅光LED的變化量大約為200mV,其它色彩大約為400mV (如圖1所示)。 
相比之下,對(duì)于低于10mA的正向電流,藍(lán)光和白光LED的正向電壓變化更小??梢灾苯邮褂帽阋说匿囯姵鼗蛉?jié)NiMH電池驅(qū)動(dòng)。 
    圖3. 該圖給出了同時(shí)并聯(lián)驅(qū)動(dòng)幾個(gè)紅光、黃光或者綠光LED的結(jié)構(gòu),具有很小的色彩差異或亮度差異。 
    因此,驅(qū)動(dòng)標(biāo)準(zhǔn)LED的電流消耗非常低。如果LED的驅(qū)動(dòng)電壓高于其最大的正向電壓,則并不需要升壓轉(zhuǎn)換器或者復(fù)雜昂貴的電流源。 
LED甚至可以直接由鋰電池或者3節(jié)NiMH電池來驅(qū)動(dòng),只要因電池放電而導(dǎo)致的亮度減弱可以滿足該應(yīng)用的要求即可。
藍(lán)光LED
在很長的一段時(shí)間內(nèi)都無法提供發(fā)射藍(lán)光的LED。設(shè)計(jì)工程師僅能采用已有的色彩:紅色、綠色和黃色。早期的“藍(lán)光”器件并不是真正的藍(lán)光LED,而是包圍有藍(lán)色散射材料的白熾燈。
幾年前,使用純凈的碳化硅(SiC)材料研制出了第一個(gè)“真正的藍(lán)光”LED,但是它們的發(fā)光效率非常低。下一代器件使用了氮化鎵基料,其發(fā)光效率可以達(dá)到最初產(chǎn)品的數(shù)倍。當(dāng)前制造藍(lán)光LED的晶體外延材料是氮化銦鎵(InGaN)。發(fā)射波長的范圍為450nm至470nm,氮化銦鎵LED可以 產(chǎn)生五倍于氮化鎵LED的光強(qiáng)。
白光LED
真正發(fā)射白光的LED是不存在的。這樣的器件非常難以制造,因?yàn)長ED的特點(diǎn)是只發(fā)射一個(gè)波長。白色并不出現(xiàn)在色彩的光譜上;一種替代的方法是,利用不同波長合成白色光。
白光LED設(shè)計(jì)中采用了一個(gè)小竅門。在發(fā)射藍(lán)光的InGaN基料上覆蓋轉(zhuǎn)換材料,這種材料在受到藍(lán)光激勵(lì)時(shí)會(huì)發(fā)出黃光。于是得到了藍(lán)光和黃光的混合物,在肉眼看來就是白色的(如圖4所示)。[2]
    圖4. 白光LED的發(fā)射波長(實(shí)線)包括藍(lán)光和黃光區(qū)域的峰值,但是在肉眼看來就是白色。肉眼的相對(duì)光敏感性(虛線)如圖所示。 
    白光LED的色彩由色彩坐標(biāo)定義。X和Y坐標(biāo)的數(shù)值根據(jù)國際照明委員會(huì)(CIE)的15.2規(guī)范的要求計(jì)算得到。[3] 白光LED的數(shù)據(jù)資料通常會(huì)詳細(xì)說明隨著正向電流增加而引起的色彩坐標(biāo)的變化(如圖5所示)。[4] 
    圖5. 正向電流的變化改變了白光LED (OSRAM Opto Semiconductors的LE Q983)的色彩坐標(biāo),并因此改變了白光質(zhì)量。 
    不幸的是,采用InGaN技術(shù)的LED并不像標(biāo)準(zhǔn)綠





